// Slightly modified version of https://github.com/pololu/vl53l0x-arduino // which returns an error code if initialization fails. #ifndef VL53L0X_h #define VL53L0X_h #include enum class VL53L0XInitResult { Success, InvalidIdentification, GetSpadInfoFailed, VHVCalibrationFailed, PhaseCalibrationFailed, }; static const uint16_t VL53L0XRangeNotStarted = 65533; static const uint16_t VL53L0XRangeNotReady = 65534; static const uint16_t VL53L0XRangeTimeout = 65535; static const uint8_t VL53L0XAsyncStateNotStarted = 0; static const uint8_t VL53L0XAsyncStateWaitingForStart = 1; static const uint8_t VL53L0XAsyncStateWaitingForStatus = 2; class VL53L0X { public: // register addresses from API vl53l0x_device.h (ordered as listed there) enum regAddr { SYSRANGE_START = 0x00, SYSTEM_THRESH_HIGH = 0x0C, SYSTEM_THRESH_LOW = 0x0E, SYSTEM_SEQUENCE_CONFIG = 0x01, SYSTEM_RANGE_CONFIG = 0x09, SYSTEM_INTERMEASUREMENT_PERIOD = 0x04, SYSTEM_INTERRUPT_CONFIG_GPIO = 0x0A, GPIO_HV_MUX_ACTIVE_HIGH = 0x84, SYSTEM_INTERRUPT_CLEAR = 0x0B, RESULT_INTERRUPT_STATUS = 0x13, RESULT_RANGE_STATUS = 0x14, RESULT_CORE_AMBIENT_WINDOW_EVENTS_RTN = 0xBC, RESULT_CORE_RANGING_TOTAL_EVENTS_RTN = 0xC0, RESULT_CORE_AMBIENT_WINDOW_EVENTS_REF = 0xD0, RESULT_CORE_RANGING_TOTAL_EVENTS_REF = 0xD4, RESULT_PEAK_SIGNAL_RATE_REF = 0xB6, ALGO_PART_TO_PART_RANGE_OFFSET_MM = 0x28, I2C_SLAVE_DEVICE_ADDRESS = 0x8A, MSRC_CONFIG_CONTROL = 0x60, PRE_RANGE_CONFIG_MIN_SNR = 0x27, PRE_RANGE_CONFIG_VALID_PHASE_LOW = 0x56, PRE_RANGE_CONFIG_VALID_PHASE_HIGH = 0x57, PRE_RANGE_MIN_COUNT_RATE_RTN_LIMIT = 0x64, FINAL_RANGE_CONFIG_MIN_SNR = 0x67, FINAL_RANGE_CONFIG_VALID_PHASE_LOW = 0x47, FINAL_RANGE_CONFIG_VALID_PHASE_HIGH = 0x48, FINAL_RANGE_CONFIG_MIN_COUNT_RATE_RTN_LIMIT = 0x44, PRE_RANGE_CONFIG_SIGMA_THRESH_HI = 0x61, PRE_RANGE_CONFIG_SIGMA_THRESH_LO = 0x62, PRE_RANGE_CONFIG_VCSEL_PERIOD = 0x50, PRE_RANGE_CONFIG_TIMEOUT_MACROP_HI = 0x51, PRE_RANGE_CONFIG_TIMEOUT_MACROP_LO = 0x52, SYSTEM_HISTOGRAM_BIN = 0x81, HISTOGRAM_CONFIG_INITIAL_PHASE_SELECT = 0x33, HISTOGRAM_CONFIG_READOUT_CTRL = 0x55, FINAL_RANGE_CONFIG_VCSEL_PERIOD = 0x70, FINAL_RANGE_CONFIG_TIMEOUT_MACROP_HI = 0x71, FINAL_RANGE_CONFIG_TIMEOUT_MACROP_LO = 0x72, CROSSTALK_COMPENSATION_PEAK_RATE_MCPS = 0x20, MSRC_CONFIG_TIMEOUT_MACROP = 0x46, SOFT_RESET_GO2_SOFT_RESET_N = 0xBF, IDENTIFICATION_MODEL_ID = 0xC0, IDENTIFICATION_REVISION_ID = 0xC2, OSC_CALIBRATE_VAL = 0xF8, GLOBAL_CONFIG_VCSEL_WIDTH = 0x32, GLOBAL_CONFIG_SPAD_ENABLES_REF_0 = 0xB0, GLOBAL_CONFIG_SPAD_ENABLES_REF_1 = 0xB1, GLOBAL_CONFIG_SPAD_ENABLES_REF_2 = 0xB2, GLOBAL_CONFIG_SPAD_ENABLES_REF_3 = 0xB3, GLOBAL_CONFIG_SPAD_ENABLES_REF_4 = 0xB4, GLOBAL_CONFIG_SPAD_ENABLES_REF_5 = 0xB5, GLOBAL_CONFIG_REF_EN_START_SELECT = 0xB6, DYNAMIC_SPAD_NUM_REQUESTED_REF_SPAD = 0x4E, DYNAMIC_SPAD_REF_EN_START_OFFSET = 0x4F, POWER_MANAGEMENT_GO1_POWER_FORCE = 0x80, VHV_CONFIG_PAD_SCL_SDA__EXTSUP_HV = 0x89, ALGO_PHASECAL_LIM = 0x30, ALGO_PHASECAL_CONFIG_TIMEOUT = 0x30, }; enum vcselPeriodType { VcselPeriodPreRange, VcselPeriodFinalRange }; uint8_t last_status; // status of last I2C transmission VL53L0X(void); void setAddress(uint8_t new_addr); inline uint8_t getAddress(void) { return address; } VL53L0XInitResult init(bool io_2v8 = true); void writeReg(uint8_t reg, uint8_t value); void writeReg16Bit(uint8_t reg, uint16_t value); void writeReg32Bit(uint8_t reg, uint32_t value); uint8_t readReg(uint8_t reg); uint16_t readReg16Bit(uint8_t reg); uint32_t readReg32Bit(uint8_t reg); void writeMulti(uint8_t reg, uint8_t const * src, uint8_t count); void readMulti(uint8_t reg, uint8_t * dst, uint8_t count); bool setSignalRateLimit(float limit_Mcps); float getSignalRateLimit(void); bool setMeasurementTimingBudget(uint32_t budget_us); uint32_t getMeasurementTimingBudget(void); bool setVcselPulsePeriod(vcselPeriodType type, uint8_t period_pclks); uint8_t getVcselPulsePeriod(vcselPeriodType type); void startContinuous(uint32_t period_ms = 0); void stopContinuous(void); uint16_t readRangeContinuousMillimeters(void); uint16_t readRangeSingleMillimeters(void); void asyncStartReadRangeSingleMillimeters(); uint16_t asyncReadRangeSingleMillimeters(); bool asyncReading(); inline void setTimeout(uint16_t timeout) { io_timeout = timeout; } inline uint16_t getTimeout(void) { return io_timeout; } bool timeoutOccurred(void); private: // TCC: Target CentreCheck // MSRC: Minimum Signal Rate Check // DSS: Dynamic Spad Selection struct SequenceStepEnables { boolean tcc, msrc, dss, pre_range, final_range; }; struct SequenceStepTimeouts { uint16_t pre_range_vcsel_period_pclks, final_range_vcsel_period_pclks; uint16_t msrc_dss_tcc_mclks, pre_range_mclks, final_range_mclks; uint32_t msrc_dss_tcc_us, pre_range_us, final_range_us; }; uint8_t address; uint16_t io_timeout; bool did_timeout; uint16_t timeout_start_ms; uint8_t stop_variable; // read by init and used when starting measurement; is StopVariable field of VL53L0X_DevData_t structure in API uint32_t measurement_timing_budget_us; uint8_t async_state = VL53L0XAsyncStateNotStarted; bool getSpadInfo(uint8_t * count, bool * type_is_aperture); void getSequenceStepEnables(SequenceStepEnables * enables); void getSequenceStepTimeouts(SequenceStepEnables const * enables, SequenceStepTimeouts * timeouts); bool performSingleRefCalibration(uint8_t vhv_init_byte); static uint16_t decodeTimeout(uint16_t value); static uint16_t encodeTimeout(uint32_t timeout_mclks); static uint32_t timeoutMclksToMicroseconds(uint16_t timeout_period_mclks, uint8_t vcsel_period_pclks); static uint32_t timeoutMicrosecondsToMclks(uint32_t timeout_period_us, uint8_t vcsel_period_pclks); }; #endif