1
0
mirror of synced 2025-01-11 02:33:08 +01:00

Updated terminology in Arduino sketch

This commit is contained in:
Mark van Renswoude 2021-02-24 19:40:59 +01:00
parent 28c25c8b43
commit a1eb61a6a9
2 changed files with 43 additions and 44 deletions

View File

@ -5,10 +5,10 @@
*
*/
// Set this to the number of potentiometers you have connected
const byte KnobCount = 1;
const byte AnalogInputCount = 1;
// For each potentiometer, specify the port
const byte KnobPin[KnobCount] = {
const byte AnalogInputPin[AnalogInputCount] = {
A2
};
@ -38,10 +38,10 @@ enum OutputMode {
};
OutputMode outputMode = Binary;
byte volume[KnobCount];
unsigned long lastChange[KnobCount];
int analogReadValue[KnobCount];
float emaValue[KnobCount];
byte analogValue[AnalogInputCount];
unsigned long lastChange[AnalogInputCount];
int analogReadValue[AnalogInputCount];
float emaValue[AnalogInputCount];
unsigned long currentTime;
unsigned long lastPlot;
@ -55,23 +55,23 @@ void setup()
// Seed the moving average
for (byte knobIndex = 0; knobIndex < KnobCount; knobIndex++)
for (byte analogInputIndex = 0; analogInputIndex < AnalogInputCount; analogInputIndex++)
{
pinMode(KnobPin[knobIndex], INPUT);
emaValue[knobIndex] = analogRead(KnobPin[knobIndex]);
pinMode(AnalogInputPin[analogInputIndex], INPUT);
emaValue[analogInputIndex] = analogRead(AnalogInputPin[analogInputIndex]);
}
for (byte seed = 1; seed < EMASeedCount - 1; seed++)
for (byte knobIndex = 0; knobIndex < KnobCount; knobIndex++)
getVolume(knobIndex);
for (byte analogInputIndex = 0; analogInputIndex < AnalogInputCount; analogInputIndex++)
getAnalogValue(analogInputIndex);
// Read the initial values
currentTime = millis();
for (byte knobIndex = 0; knobIndex < KnobCount; knobIndex++)
for (byte analogInputIndex = 0; analogInputIndex < AnalogInputCount; analogInputIndex++)
{
volume[knobIndex] = getVolume(knobIndex);
lastChange[knobIndex] = currentTime;
analogValue[analogInputIndex] = getAnalogValue(analogInputIndex);
lastChange[analogInputIndex] = currentTime;
}
}
@ -86,20 +86,20 @@ void loop()
// is acceptable and saves a few calls to millis.
currentTime = millis();
// Check volume knobs
byte newVolume;
for (byte knobIndex = 0; knobIndex < KnobCount; knobIndex++)
// Check analog inputs
byte newAnalogValue;
for (byte analogInputIndex = 0; analogInputIndex < AnalogInputCount; analogInputIndex++)
{
newVolume = getVolume(knobIndex);
newAnalogValue = getAnalogValue(analogInputIndex);
if (newVolume != volume[knobIndex] && (currentTime - lastChange[knobIndex] >= MinimumInterval))
if (newAnalogValue != analogValue[analogInputIndex] && (currentTime - lastChange[analogInputIndex] >= MinimumInterval))
{
if (active)
// Send out new value
outputVolume(knobIndex, newVolume);
outputAnalogValue(analogInputIndex, newAnalogValue);
volume[knobIndex] = newVolume;
lastChange[knobIndex] = currentTime;
analogValue[analogInputIndex] = newAnalogValue;
lastChange[analogInputIndex] = currentTime;
}
}
@ -170,13 +170,16 @@ void processHandshakeMessage()
{
case Binary:
Serial.write('H');
Serial.write(KnobCount);
Serial.write(AnalogInputCount);
Serial.write((byte)0);
Serial.write((byte)0);
Serial.write((byte)0);
break;
case PlainText:
Serial.print("Hello! I have ");
Serial.print(KnobCount);
Serial.println(" knobs.");
Serial.print(AnalogInputCount);
Serial.println(" analog inputs and no support yet for everything else.");
break;
}
@ -198,35 +201,35 @@ void processQuitMessage()
}
byte getVolume(byte knobIndex)
byte getAnalogValue(byte analogInputIndex)
{
analogRead(KnobPin[knobIndex]);
analogRead(AnalogInputPin[analogInputIndex]);
// Give the ADC some time to stabilize
delay(10);
analogReadValue[knobIndex] = analogRead(KnobPin[knobIndex]);
emaValue[knobIndex] = (EMAAlpha * analogReadValue[knobIndex]) + ((1 - EMAAlpha) * emaValue[knobIndex]);
analogReadValue[analogInputIndex] = analogRead(AnalogInputPin[analogInputIndex]);
emaValue[analogInputIndex] = (EMAAlpha * analogReadValue[analogInputIndex]) + ((1 - EMAAlpha) * emaValue[analogInputIndex]);
return map(emaValue[knobIndex], 0, 1023, 0, 100);
return map(emaValue[analogInputIndex], 0, 1023, 0, 100);
}
void outputVolume(byte knobIndex, byte newVolume)
void outputAnalogValue(byte analogInputIndex, byte newValue)
{
switch (outputMode)
{
case Binary:
Serial.write('V');
Serial.write(knobIndex);
Serial.write(newVolume);
Serial.write(analogInputIndex);
Serial.write(newValue);
break;
case PlainText:
Serial.print("Volume #");
Serial.print(knobIndex);
Serial.print("Analog value #");
Serial.print(analogInputIndex);
Serial.print(" = ");
Serial.println(newVolume);
Serial.println(newValue);
break;
}
}
@ -234,7 +237,7 @@ void outputVolume(byte knobIndex, byte newVolume)
void outputPlotter()
{
for (byte i = 0; i < KnobCount; i++)
for (byte i = 0; i < AnalogInputCount; i++)
{
if (i > 0)
Serial.print('\t');
@ -243,7 +246,7 @@ void outputPlotter()
Serial.print('\t');
Serial.print(emaValue[i]);
Serial.print('\t');
Serial.print(volume[i]);
Serial.print(analogValue[i]);
}
Serial.println();

View File

@ -174,13 +174,9 @@ namespace MassiveKnob.Plugin.SerialDevice.Worker
if ((char) response == 'H')
{
// TODO support multiple I/O's
var knobCount = serialPort.ReadByte();
if (knobCount > -1)
{
specs = new DeviceSpecs(knobCount, 0, 0, 0);
specs = new DeviceSpecs(serialPort.ReadByte(), serialPort.ReadByte(), serialPort.ReadByte(), serialPort.ReadByte());
if (specs.AnalogInputCount > -1 && specs.DigitalInputCount > -1 && specs.AnalogOutputCount > -1 && specs.DigitalOutputCount > -1)
return true;
}
}
else
CheckForError(serialPort, (char)response);