MassiveKnob/Arduino/MassiveKnob/MassiveKnob.ino

496 lines
12 KiB
C++

/*
*
* Configuration
* Modify these settings according to your hardware design
*
*/
// Set this to the number of potentiometers you have connected
const byte AnalogInputCount = 2;
// Set this to the number of buttons you have connected
const byte DigitalInputCount = 3;
// Set this to the number of PWM outputs you have connected
// Note that this version of the sketch only does a simple analogWrite with the full range,
// which is not compatible with servos. Modify as required.
const byte AnalogOutputCount = 3;
// Set this to the number of digital outputs you have connected
const byte DigitalOutputCount = 0;
// For each potentiometer, specify the pin
const byte AnalogInputPin[AnalogInputCount] = {
A0,
A1
};
// For each button, specify the pin. Assumes pull-up.
const byte DigitalInputPin[DigitalInputCount] = {
7,
8,
9
};
// For each analog output, specify the PWM capable pin
const byte AnalogOutputPin[AnalogOutputCount] = {
3,
5,
6
};
// Define this constant to apply a standard LED brightness curve to (all) analog outputs
#define AnalogOutputGammaCorrection
// For each digital output, specify the pin
const byte DigitalOutputPin[DigitalOutputCount] = {
};
// Minimum time between reporting changing values, reduces serial traffic and debounces digital inputs
const unsigned long MinimumInterval = 50;
// Alpha value of the Exponential Moving Average (EMA) for analog inputs to reduce noise
const float EMAAlpha = 0.6;
// How many measurements to take at boot time for analog inputs to seed the EMA
const byte EMASeedCount = 5;
// Minimum treshold for reporting changes in analog values, reduces noise left over from the EMA. Note that once an analog value
// changes beyond the treshold, that input will report all changes until the FocusTimeout has expired to avoid losing accuracy.
const byte AnalogTreshold = 2;
// How long to ignore other inputs after an input changes. Reduces noise due voltage drops.
const unsigned long FocusTimeout = 100;
/*
*
* Le code
* Here be dragons.
*
*/
// If defined, only outputs will be sent to the serial port as Arduino Plotter compatible data
//#define DebugOutputPlotter
#ifndef DebugOutputPlotter
#include "./min.h"
#include "./min.c"
// MIN protocol context and callbacks
struct min_context minContext;
uint16_t min_tx_space(uint8_t port) { return 512U; }
void min_tx_byte(uint8_t port, uint8_t byte)
{
while (Serial.write(&byte, 1U) == 0) { }
}
uint32_t min_time_ms(void) { return millis(); }
void min_application_handler(uint8_t min_id, uint8_t *min_payload, uint8_t len_payload, uint8_t port);
void min_tx_start(uint8_t port) {}
void min_tx_finished(uint8_t port) {}
const uint8_t FrameIDHandshake = 42;
const uint8_t FrameIDHandshakeResponse = 43;
const uint8_t FrameIDAnalogInput = 1;
const uint8_t FrameIDDigitalInput = 2;
const uint8_t FrameIDAnalogOutput = 3;
const uint8_t FrameIDDigitalOutput = 4;
const uint8_t FrameIDQuit = 62;
const uint8_t FrameIDError = 63;
#endif
struct AnalogInputStatus
{
byte Value;
unsigned long LastChange;
int ReadValue;
float EMAValue;
};
struct DigitalInputStatus
{
bool Value;
unsigned long LastChange;
};
struct AnalogInputStatus analogInputStatus[AnalogInputCount];
struct DigitalInputStatus digitalInputStatus[DigitalInputCount];
void setup()
{
Serial.begin(115200);
// Wait for the Serial port hardware to initialise
while (!Serial) {}
#ifndef DebugOutputPlotter
// Set up the MIN protocol (http://github.com/min-protocol/min)
min_init_context(&minContext, 0);
#endif
// Seed the moving average for analog inputs
for (byte i = 0; i < AnalogInputCount; i++)
{
pinMode(AnalogInputPin[i], INPUT);
analogInputStatus[i].EMAValue = analogRead(AnalogInputPin[i]);
}
for (byte i = 0; i < AnalogInputCount; i++)
for (byte seed = 1; seed < EMASeedCount - 1; seed++)
getAnalogValue(i);
// Read the initial stabilized values
for (byte i = 0; i < AnalogInputCount; i++)
{
analogInputStatus[i].Value = getAnalogValue(i);
analogInputStatus[i].LastChange = millis();
}
// Set up analog outputs
for (byte i = 0; i < AnalogOutputCount; i++)
{
pinMode(AnalogOutputPin[i], OUTPUT);
analogWrite(AnalogOutputPin[i], 0);
}
// Set up digital inputs and outputs
for (byte i = 0; i < DigitalInputCount; i++)
{
pinMode(DigitalInputPin[i], INPUT_PULLUP);
digitalInputStatus[i].Value = getDigitalValue(i);
digitalInputStatus[i].LastChange = millis();
}
for (byte i = 0; i < DigitalOutputCount; i++)
{
pinMode(DigitalOutputPin[i], OUTPUT);
digitalWrite(DigitalOutputPin[i], LOW);
}
}
#ifdef DebugOutputPlotter
unsigned long lastOutput = 0;
#endif
enum FocusType
{
FocusTypeNone = 0,
FocusTypeAnalogInput = 1,
FocusTypeDigitalInput = 2,
FocusTypeOutput = 3
};
bool active = false;
FocusType focusType = FocusTypeNone;
byte focusInputIndex;
unsigned long focusOutputTime;
#define IsAnalogInputFocus(i) ((focusType == FocusInputType.AnalogInput) && (focusInputIndex == i))
#define IsDigitalInputFocus(i) ((focusType == FocusInputType.DigitalInput) && (focusInputIndex == i))
#ifdef AnalogOutputGammaCorrection
const uint8_t PROGMEM gamma8[] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2,
2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5,
5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10,
10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16,
17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 24, 24, 25,
25, 26, 27, 27, 28, 29, 29, 30, 31, 32, 32, 33, 34, 35, 35, 36,
37, 38, 39, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 50,
51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68,
69, 70, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89,
90, 92, 93, 95, 96, 98, 99,101,102,104,105,107,109,110,112,114,
115,117,119,120,122,124,126,127,129,131,133,135,137,138,140,142,
144,146,148,150,152,154,156,158,160,162,164,167,169,171,173,175,
177,180,182,184,186,189,191,193,196,198,200,203,205,208,210,213,
215,218,220,223,225,228,231,233,236,239,241,244,247,249,252,255 };
#endif
void loop()
{
#ifndef DebugOutputPlotter
char readBuffer[32];
size_t readBufferSize = Serial.available() > 0 ? Serial.readBytes(readBuffer, 32U) : 0;
min_poll(&minContext, (uint8_t*)readBuffer, (uint8_t)readBufferSize);
#endif
if (focusType == FocusTypeOutput && millis() - focusOutputTime >= FocusTimeout)
focusType = FocusTypeNone;
// Check analog inputs
byte newAnalogValue;
for (byte i = 0; i < AnalogInputCount; i++)
{
newAnalogValue = getAnalogValue(i);
bool changed;
switch (focusType)
{
case FocusTypeAnalogInput:
if (focusInputIndex != i)
continue;
if (millis() - analogInputStatus[i].LastChange < FocusTimeout)
{
changed = newAnalogValue != analogInputStatus[i].Value;
break;
}
else
focusType = FocusTypeNone;
// fall-through
case FocusTypeNone:
changed = abs(analogInputStatus[i].Value - newAnalogValue) >= AnalogTreshold;
break;
default:
continue;
}
if (changed && (millis() - analogInputStatus[i].LastChange >= MinimumInterval))
{
if (active)
// Send out new value
outputAnalogValue(i, newAnalogValue);
analogInputStatus[i].Value = newAnalogValue;
analogInputStatus[i].LastChange = millis();
}
}
// Check digital inputs
bool newDigitalValue;
for (byte i = 0; i < DigitalInputCount; i++)
{
newDigitalValue = getDigitalValue(i);
switch (focusType)
{
case FocusTypeAnalogInput:
case FocusTypeOutput:
continue;
case FocusTypeDigitalInput:
if (focusInputIndex != i)
continue;
if (millis() - digitalInputStatus[i].LastChange >= FocusTimeout)
focusType = FocusTypeNone;
break;
}
if (newDigitalValue != digitalInputStatus[i].Value && (millis() - digitalInputStatus[i].LastChange >= MinimumInterval))
{
if (active)
// Send out new value
outputDigitalValue(i, newDigitalValue);
digitalInputStatus[i].Value = newDigitalValue;
digitalInputStatus[i].LastChange = millis();
}
}
#ifdef DebugOutputPlotter
if (millis() - lastOutput >= 100)
{
for (byte i = 0; i < AnalogInputCount; i++)
{
if (i > 0)
Serial.print("\t");
Serial.print(analogInputStatus[i].Value);
}
for (byte i = 0; i < DigitalInputCount; i++)
{
if (i > 0 || AnalogInputCount > 0)
Serial.print("\t");
Serial.print(digitalInputStatus[i].Value ? 100 : 0);
}
Serial.println();
lastOutput = millis();
}
#endif
}
#ifndef DebugOutputPlotter
void min_application_handler(uint8_t min_id, uint8_t *min_payload, uint8_t len_payload, uint8_t port)
{
switch (min_id)
{
case FrameIDHandshake:
processHandshakeMessage(min_payload, len_payload);
break;
case FrameIDAnalogOutput:
processAnalogOutputMessage(min_payload, len_payload);
break;
case FrameIDDigitalOutput:
processDigitalOutputMessage(min_payload, len_payload);
break;
case FrameIDQuit:
processQuitMessage();
break;
default:
outputError("Unknown frame ID: " + String(min_id));
break;
}
}
void processHandshakeMessage(uint8_t *min_payload, uint8_t len_payload)
{
if (len_payload < 2)
{
outputError("Invalid handshake length");
return;
}
if (min_payload[0] != 'M' || min_payload[1] != 'K')
{
outputError("Invalid handshake: " + String((char)min_payload[0]) + String((char)min_payload[1]));
return;
}
byte payload[4] { AnalogInputCount, DigitalInputCount, AnalogOutputCount, DigitalOutputCount };
if (min_queue_frame(&minContext, FrameIDHandshakeResponse, (uint8_t *)payload, 4))
active = true;
}
void processDigitalOutputMessage(uint8_t *min_payload, uint8_t len_payload)
{
if (len_payload < 2)
{
outputError("Invalid digital output payload length");
return;
}
byte outputIndex = min_payload[0];
if (outputIndex < DigitalOutputCount)
{
digitalWrite(DigitalOutputPin[min_payload[0]], min_payload[1] == 0 ? LOW : HIGH);
focusType = FocusTypeOutput;
focusOutputTime = millis();
}
else
outputError("Invalid digital output index: " + String(outputIndex));
}
void processAnalogOutputMessage(uint8_t *min_payload, uint8_t len_payload)
{
if (len_payload < 2)
{
outputError("Invalid analog output payload length");
return;
}
byte outputIndex = min_payload[0];
if (outputIndex < AnalogOutputCount)
{
byte value = min_payload[1];
if (value > 100)
value = 100;
value = map(value, 0, 100, 0, 255);
#ifdef AnalogOutputGammaCorrection
value = pgm_read_byte(&gamma8[value]);
#endif
analogWrite(AnalogOutputPin[min_payload[0]], value);
focusType = FocusTypeOutput;
focusOutputTime = millis();
}
else
outputError("Invalid analog output index: " + String(outputIndex));
}
void processQuitMessage()
{
active = false;
}
#endif
byte getAnalogValue(byte analogInputIndex)
{
analogRead(AnalogInputPin[analogInputIndex]);
// Give the ADC some time to stabilize
delay(10);
int readValue = analogRead(AnalogInputPin[analogInputIndex]);
analogInputStatus[analogInputIndex].ReadValue = readValue;
int newEMAValue = (EMAAlpha * readValue) + ((1 - EMAAlpha) * analogInputStatus[analogInputIndex].EMAValue);
analogInputStatus[analogInputIndex].EMAValue = newEMAValue;
return map(newEMAValue, 0, 1023, 0, 100);
}
bool getDigitalValue(byte digitalInputIndex)
{
return digitalRead(DigitalInputPin[digitalInputIndex]) == LOW;
}
void outputAnalogValue(byte analogInputIndex, byte newValue)
{
#ifndef DebugOutputPlotter
byte payload[2] = { analogInputIndex, newValue };
min_send_frame(&minContext, FrameIDAnalogInput, (uint8_t *)payload, 2);
#endif
}
void outputDigitalValue(byte digitalInputIndex, bool newValue)
{
#ifndef DebugOutputPlotter
byte payload[2] = { digitalInputIndex, newValue ? 1 : 0 };
min_send_frame(&minContext, FrameIDDigitalInput, (uint8_t *)payload, 2);
#endif
}
void outputError(String message)
{
#ifndef DebugOutputPlotter
min_send_frame(&minContext, FrameIDError, (uint8_t *)message.c_str(), message.length());
#endif
}