1
0
mirror of synced 2024-11-24 11:43:12 +01:00
Tapeti/Examples/05-SpeedTest/Program.cs

141 lines
4.2 KiB
C#
Raw Normal View History

using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Threading;
using System.Threading.Tasks;
using ExampleLib;
using Messaging.TapetiExample;
using SimpleInjector;
using Tapeti;
using Tapeti.Default;
using Tapeti.SimpleInjector;
namespace _05_SpeedTest
{
public class Program
{
private const int MessageCount = 20000;
// This does not make a massive difference, since internally Tapeti uses a single thread
// to perform all channel operations as recommended by the RabbitMQ .NET client library.
private const int ConcurrentTasks = 20;
public static void Main(string[] args)
{
var container = new Container();
var dependencyResolver = new SimpleInjectorDependencyResolver(container);
container.Register<ILogger, ConsoleLogger>();
var helper = new ExampleConsoleApp(dependencyResolver);
helper.Run(MainAsync);
}
internal static async Task MainAsync(IDependencyResolver dependencyResolver, Func<Task> waitForDone)
{
var container = (IDependencyContainer)dependencyResolver;
container.RegisterDefaultSingleton<IMessageCounter>(new MessageCounter(MessageCount, () =>
{
var exampleState = dependencyResolver.Resolve<IExampleState>();
exampleState.Done();
}));
var config = new TapetiConfig(dependencyResolver)
// On a developer test machine, this makes the difference between 2200 messages/sec and 3000 messages/sec published.
// Interesting, but only if speed is more important than guaranteed delivery.
//.DisablePublisherConfirms()
.RegisterAllControllers()
.Build();
using (var connection = new TapetiConnection(config))
{
var subscriber = await connection.Subscribe(false);
var publisher = dependencyResolver.Resolve<IPublisher>();
Console.WriteLine($"Publishing {MessageCount} messages...");
var stopwatch = new Stopwatch();
stopwatch.Start();
await PublishMessages(publisher);
stopwatch.Stop();
Console.WriteLine($"Took {stopwatch.ElapsedMilliseconds} ms, {MessageCount / (stopwatch.ElapsedMilliseconds / 1000F):F0} messages/sec");
Console.WriteLine("Consuming messages...");
await subscriber.Resume();
stopwatch.Restart();
await waitForDone();
stopwatch.Stop();
Console.WriteLine($"Took {stopwatch.ElapsedMilliseconds} ms, {MessageCount / (stopwatch.ElapsedMilliseconds / 1000F):F0} messages/sec");
}
}
internal static async Task PublishMessages(IPublisher publisher)
{
var semaphore = new SemaphoreSlim(ConcurrentTasks);
var tasks = new List<Task>();
for (var i = 0; i < MessageCount; i++)
{
var item = i;
var task = Task.Run(async () =>
{
try
{
await semaphore.WaitAsync();
await publisher.Publish(new SpeedTestMessage
{
PublishCount = item
});
}
finally
{
semaphore.Release();
}
});
tasks.Add(task);
}
await Task.WhenAll(tasks);
}
}
internal class MessageCounter : IMessageCounter
{
private readonly int max;
private readonly Action done;
private int count;
public MessageCounter(int max, Action done)
{
this.max = max;
this.done = done;
}
public void Add()
{
// With a prefetchcount > 1 the consumers are running in multiple threads,
// beware of this when using singletons.
if (Interlocked.Increment(ref count) == max)
done();
}
}
}