DeskControl/src/lib/vl53l0x.h

205 lines
7.0 KiB
C++

// Slightly modified version of https://github.com/pololu/vl53l0x-arduino
// which returns an error code if initialization fails.
#ifndef VL53L0X_h
#define VL53L0X_h
#include <Arduino.h>
enum class VL53L0XInitResult
{
Success,
InvalidIdentification,
GetSpadInfoFailed,
VHVCalibrationFailed,
PhaseCalibrationFailed,
};
static const uint16_t VL53L0XRangeNotStarted = 65533;
static const uint16_t VL53L0XRangeNotReady = 65534;
static const uint16_t VL53L0XRangeTimeout = 65535;
static const uint8_t VL53L0XAsyncStateNotStarted = 0;
static const uint8_t VL53L0XAsyncStateWaitingForStart = 1;
static const uint8_t VL53L0XAsyncStateWaitingForStatus = 2;
class VL53L0X
{
public:
// register addresses from API vl53l0x_device.h (ordered as listed there)
enum regAddr
{
SYSRANGE_START = 0x00,
SYSTEM_THRESH_HIGH = 0x0C,
SYSTEM_THRESH_LOW = 0x0E,
SYSTEM_SEQUENCE_CONFIG = 0x01,
SYSTEM_RANGE_CONFIG = 0x09,
SYSTEM_INTERMEASUREMENT_PERIOD = 0x04,
SYSTEM_INTERRUPT_CONFIG_GPIO = 0x0A,
GPIO_HV_MUX_ACTIVE_HIGH = 0x84,
SYSTEM_INTERRUPT_CLEAR = 0x0B,
RESULT_INTERRUPT_STATUS = 0x13,
RESULT_RANGE_STATUS = 0x14,
RESULT_CORE_AMBIENT_WINDOW_EVENTS_RTN = 0xBC,
RESULT_CORE_RANGING_TOTAL_EVENTS_RTN = 0xC0,
RESULT_CORE_AMBIENT_WINDOW_EVENTS_REF = 0xD0,
RESULT_CORE_RANGING_TOTAL_EVENTS_REF = 0xD4,
RESULT_PEAK_SIGNAL_RATE_REF = 0xB6,
ALGO_PART_TO_PART_RANGE_OFFSET_MM = 0x28,
I2C_SLAVE_DEVICE_ADDRESS = 0x8A,
MSRC_CONFIG_CONTROL = 0x60,
PRE_RANGE_CONFIG_MIN_SNR = 0x27,
PRE_RANGE_CONFIG_VALID_PHASE_LOW = 0x56,
PRE_RANGE_CONFIG_VALID_PHASE_HIGH = 0x57,
PRE_RANGE_MIN_COUNT_RATE_RTN_LIMIT = 0x64,
FINAL_RANGE_CONFIG_MIN_SNR = 0x67,
FINAL_RANGE_CONFIG_VALID_PHASE_LOW = 0x47,
FINAL_RANGE_CONFIG_VALID_PHASE_HIGH = 0x48,
FINAL_RANGE_CONFIG_MIN_COUNT_RATE_RTN_LIMIT = 0x44,
PRE_RANGE_CONFIG_SIGMA_THRESH_HI = 0x61,
PRE_RANGE_CONFIG_SIGMA_THRESH_LO = 0x62,
PRE_RANGE_CONFIG_VCSEL_PERIOD = 0x50,
PRE_RANGE_CONFIG_TIMEOUT_MACROP_HI = 0x51,
PRE_RANGE_CONFIG_TIMEOUT_MACROP_LO = 0x52,
SYSTEM_HISTOGRAM_BIN = 0x81,
HISTOGRAM_CONFIG_INITIAL_PHASE_SELECT = 0x33,
HISTOGRAM_CONFIG_READOUT_CTRL = 0x55,
FINAL_RANGE_CONFIG_VCSEL_PERIOD = 0x70,
FINAL_RANGE_CONFIG_TIMEOUT_MACROP_HI = 0x71,
FINAL_RANGE_CONFIG_TIMEOUT_MACROP_LO = 0x72,
CROSSTALK_COMPENSATION_PEAK_RATE_MCPS = 0x20,
MSRC_CONFIG_TIMEOUT_MACROP = 0x46,
SOFT_RESET_GO2_SOFT_RESET_N = 0xBF,
IDENTIFICATION_MODEL_ID = 0xC0,
IDENTIFICATION_REVISION_ID = 0xC2,
OSC_CALIBRATE_VAL = 0xF8,
GLOBAL_CONFIG_VCSEL_WIDTH = 0x32,
GLOBAL_CONFIG_SPAD_ENABLES_REF_0 = 0xB0,
GLOBAL_CONFIG_SPAD_ENABLES_REF_1 = 0xB1,
GLOBAL_CONFIG_SPAD_ENABLES_REF_2 = 0xB2,
GLOBAL_CONFIG_SPAD_ENABLES_REF_3 = 0xB3,
GLOBAL_CONFIG_SPAD_ENABLES_REF_4 = 0xB4,
GLOBAL_CONFIG_SPAD_ENABLES_REF_5 = 0xB5,
GLOBAL_CONFIG_REF_EN_START_SELECT = 0xB6,
DYNAMIC_SPAD_NUM_REQUESTED_REF_SPAD = 0x4E,
DYNAMIC_SPAD_REF_EN_START_OFFSET = 0x4F,
POWER_MANAGEMENT_GO1_POWER_FORCE = 0x80,
VHV_CONFIG_PAD_SCL_SDA__EXTSUP_HV = 0x89,
ALGO_PHASECAL_LIM = 0x30,
ALGO_PHASECAL_CONFIG_TIMEOUT = 0x30,
};
enum vcselPeriodType { VcselPeriodPreRange, VcselPeriodFinalRange };
uint8_t last_status; // status of last I2C transmission
VL53L0X(void);
void setAddress(uint8_t new_addr);
inline uint8_t getAddress(void) { return address; }
VL53L0XInitResult init(bool io_2v8 = true);
void writeReg(uint8_t reg, uint8_t value);
void writeReg16Bit(uint8_t reg, uint16_t value);
void writeReg32Bit(uint8_t reg, uint32_t value);
uint8_t readReg(uint8_t reg);
uint16_t readReg16Bit(uint8_t reg);
uint32_t readReg32Bit(uint8_t reg);
void writeMulti(uint8_t reg, uint8_t const * src, uint8_t count);
void readMulti(uint8_t reg, uint8_t * dst, uint8_t count);
bool setSignalRateLimit(float limit_Mcps);
float getSignalRateLimit(void);
bool setMeasurementTimingBudget(uint32_t budget_us);
uint32_t getMeasurementTimingBudget(void);
bool setVcselPulsePeriod(vcselPeriodType type, uint8_t period_pclks);
uint8_t getVcselPulsePeriod(vcselPeriodType type);
void startContinuous(uint32_t period_ms = 0);
void stopContinuous(void);
uint16_t readRangeContinuousMillimeters(void);
uint16_t readRangeSingleMillimeters(void);
void asyncStartReadRangeSingleMillimeters();
uint16_t asyncReadRangeSingleMillimeters();
bool asyncReading();
inline void setTimeout(uint16_t timeout) { io_timeout = timeout; }
inline uint16_t getTimeout(void) { return io_timeout; }
bool timeoutOccurred(void);
private:
// TCC: Target CentreCheck
// MSRC: Minimum Signal Rate Check
// DSS: Dynamic Spad Selection
struct SequenceStepEnables
{
boolean tcc, msrc, dss, pre_range, final_range;
};
struct SequenceStepTimeouts
{
uint16_t pre_range_vcsel_period_pclks, final_range_vcsel_period_pclks;
uint16_t msrc_dss_tcc_mclks, pre_range_mclks, final_range_mclks;
uint32_t msrc_dss_tcc_us, pre_range_us, final_range_us;
};
uint8_t address;
uint16_t io_timeout;
bool did_timeout;
uint16_t timeout_start_ms;
uint8_t stop_variable; // read by init and used when starting measurement; is StopVariable field of VL53L0X_DevData_t structure in API
uint32_t measurement_timing_budget_us;
uint8_t async_state = VL53L0XAsyncStateNotStarted;
bool getSpadInfo(uint8_t * count, bool * type_is_aperture);
void getSequenceStepEnables(SequenceStepEnables * enables);
void getSequenceStepTimeouts(SequenceStepEnables const * enables, SequenceStepTimeouts * timeouts);
bool performSingleRefCalibration(uint8_t vhv_init_byte);
static uint16_t decodeTimeout(uint16_t value);
static uint16_t encodeTimeout(uint32_t timeout_mclks);
static uint32_t timeoutMclksToMicroseconds(uint16_t timeout_period_mclks, uint8_t vcsel_period_pclks);
static uint32_t timeoutMicrosecondsToMclks(uint32_t timeout_period_us, uint8_t vcsel_period_pclks);
};
#endif